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Steady incompressible flow past a row of circular 
cylinders 

By BENGT FORNBERG 
Corporate Research, Exxon Research and Engineering Company, Annandale, NJ 08801, USA 

(Received 30 July 1990) 

Numerical solutions are presented for steady two-dimensional incompressible flow 
past an infinite row of cylinders (of unit radii, with distances W between their 
centres). The calculations cover R < 700 for 5 < W < 00 and also R = 800 for 
5 < W < 100 (where R denotes the Reynolds number based on the cylinder 
diameters). The recirculation regions (wake bubbles) are found to grow in length 
approximately linearly with R in all cases. For high values of R, a major change 
occurs in their character when W is increased past Wcrit x 16. While they have 
remained slerider up to this point (essentially only stretching in length in proportion 
to R), their centres of circulation have moved towards their ends. As W is further 
increased, the wake bubbles widen rapidly, beginning from the rear of the wakes. In  
the limit of W+m, the present results agree with the previous ones for a single 
cylinder as reported by Fornberg (1985). 

1. Introduction 
The arrangement of cylinders considered in this study is illustrated in figure 1 ; 

symmetry is assumed in the flow fields about the dashed horizontal lines. Previous 
results for steady flows in this (or similar) geometries are summarized, for example, 
in the introduction of Ingham, Tang & Morton (1990). In particular, results by Smith 
(1985) and by Milos & Acrivos (1986) indicate that, for small cylinder separations W ,  
the lengths of the recirculation regions will grow indefinitely with R (the Reynolds 
number). However, these solutions (which can be obtained from boundary-layer 
approximations) fail to exist above a certain Wcrit. By numerical solution of the 
Navier-Stokes equations for still higher values of W (in the similar context of an 
expanding channel with slip walls), Milos, Acrivos & Kim (1987) found two other, 
qualitatively distinct regimes. The first one (for W just above W,,,,) again featured 
growing wakes. For even larger W ,  finite-sized Prandtl-Batchelor wakes were 
obtained (Batchelor 1956). 

The present study confirms the first two of these three regimes and details the 
transition between them, but finds no evidence for the third regime (cf. some 
comments a t  the end of 57). In the limit of W+m, the present solutions tend 
smoothly towards the ones previously reported for a single cylinder (Fornberg 1985). 

Two separate codes were developed in order to effectively cover the cases of both 
‘narrow ’ (W < 40) and ‘wide ’ ( W 2 40) cylinder separations (in the following 
denoted ‘narrow code’ and ‘wide code’ respectively). In both cases, the numerical 
approach consisted in approximating the governing equations by second-order 
centred finite differences on conformally mapped and stretched grids. The resulting 
algebraic systems were then solved by (quadratically convergent) Newton iterations. 
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WQURE 1. Schematic of flow configuration. 

2. Mathematical formulation 
In stream function-vorticity formulation (cylinders of radii 1 and Reynolds 

number R based on the cylinder diameters), the steady NavierStokes equations take 
the form 

The two boundary conditions on the body surface are Y=aY/an=O. On the 
two primary symmetry lines y = 0 and y = tW (cf. figure l),  the conditions are 
!P = w = 0 and Y = tW, w = 0 respectively. Finally, !P = y and w = 0 hold as 
z-+koo (‘free stream’). 

3. Generation of computational grids 
An arbitrary conformal mapping from a complex (X = z+iy)-plane to a 

(2 = [+iy)-plane introduces only one additional factor in one of the governing 
equations. After such a mapping, (1) and (2) become 
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W+cO 

+w 
1 
0 
0 
0 
0 
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w= 100 W = 5 0  w = 2 0  w =  10 w = 5  
99.96710348 49.93421993 19.83577431 9.67308621 4.35640639 

1.000329 10 1.001 317 68 1.00829321 1.03404008 1.153 176 37 

0.00000003 0.000002 11 0.00015600 
-0.00000002 -0.00000624 

0.00000025 
-0.00000001 

-0.00000002 -0.00000035 -0.00001364 -0.00022418 -0.00409423 

TABLE 1.  Values of the parameters V and {a,} for some values of W 

v -  

P I  Q 
- 1  1 10 

V 
50 

U 
80 

% 0 
300 

260 X-plane 

9 -  

0 -  G-plane PO % % 
- 3 - 2  21 21 

FIQURE 2. Examples of grids used in the 'narrow code', shown here for W = 40, M = 79 and 
N = 16 (corresponding to M = 937, N = 181 with one out of every 12 grid lines displayed). 

3.1. Narrow code ( W < 40) 
In this case, we want first to find a convenient representation of the conformal 
mapping X = X ( 2 )  between the flow domain 0 4 ImX 4 tW minus the unit circle 
(XI = 1 in the X-plane and an infinite strip in the 2-plane. This can be achieved 
by eliminating T between the expressions 

(5) 
V 
W 2 = -{X+a,T+a,~+aa3~+...}, 

and T = -coth( iX).  x 
W 

For any real values of the parameters V and {a,}, equations (5) and (6) map 
ImX = 0 to ImZ = 0 and ImX = tW to Im 2 = a?'. We want to find values for these 
parameters such that the unit circle = 1 also maps to a section of the real Z-axis, 
for example -2 < 2 < 2. To achieve this, one can consider the Laurent expansion (in 
powers of X) of the right-hand side of (5) (in the present calculations obtained by 
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7 - 3  -2 2 21 U 0 9 
-3  -2 2 300 1 0 19.96 5 

a 2 q a 7 2  0 0 a27/au2 0 0 
x / a 7  

t 
quartic cubic quintic cubic 1(4 = &) = 

TABLE 2. Parameters for grid stretching, narrow code (2 = E+iq, G = 7+iu) 

0.3 0.3 al/au 0.2 

t t t t t 
(W < 40) ( W = 4 0 )  

numerical Taylor expansion of odd powers of X coth X ,  by the method described by 
Fornberg 1981 a,  b ) .  Requiring that, for each k = 1,3,5, ... , the X k  and X-k terms 
in this expansion of ( 5 )  have equal (real) coefficients, thus causing the unit circle 
1x1 = 1 to map to the real axis, leads, in a straightforward manner, to  a rapidly con- 
verging iteration process for determining V and {a,}. Table 1 gives values for Vand {a,} 
corresponding to  some choices of W.  The series in (5) is seen to  converge very rapidly. 

The mapping just described takes a region in the X-plane, as shown in figure 2 (a ) ,  
and transforms it to a rectangle in the 2-plane (figure 2b). Since the resolution 
requirements are different in different parts of this rectangle, we consider a further 
plane (G-plane, figure 2c). We use an equispaced grid in this plane; the mapping 
between the Z -  and the G-planes consists of independent grid stretchings in the two 
space directions: vertically a quartic polynomial with inflexion points a t  the two 
edges, horizontally a cubic-quintic-cubic spline with nodes (which are also inflexion 
and fix points) a t  -2  and 2. The additional free parameters (cf. table 2)  were chosen 
to give enhanced resolution in the boundary layer and at the front and back 
stagnation points on the cylinder, to compensate for singularities in the conformal 
mapping a t  these points. 

Figure 2(a-e) shows the grids used for W = 40, although only every 12th grid line 
is marked (horizontally and vertically; actual grids up to 937 x 181 were used us. 
79 x 16 shown in figure 2). 

3.2. Wide code (W b 40) 
Even with use of vertical grid stretching, it turns out to  be computationally very 
uneconomical to use grids which extend all the way between ImX = O  and 
Im X = tW if W is large. Therefore, for W 2 40, we instead use a grid which is just wide 
enough to enclose the area where w is non-zero. The required vertical periodicity is 
implemented by a suitable boundary condition along the top edge of this 
computational domain. A convenient mapping X = X ( 2 )  for this case can again be 
expressed by means of an auxiliary variable T: 

(7) 

For any value of a, X < - 1 maps to the positive imaginary axis -iZ > 0. With the 
choice 

a = l - ~ a r c t a n ~ - a r c t a n ~ }  x 0.685 ... (9) 
the unit circle 1x1 = 1 maps to 0 < 2 < 2 and X > 1 to  Z > 2. 
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FIGURE 3. Examples of grids used in the ‘wide code’, showri here for M = 81 and N = 13. 
Actual grid densities ranged up to M = 701, N = 121. 

7 0 2 16 fY 0 1 

0 2 15 3 0 0.7 
0.1 a3/aa 0.2 

E 
aqa7 0.1 
ay/w 0 0 a23/aa2 0 

t t t t t 
4 7 )  = quintic cubic 1 ( 4  = cubic 

TABLE 3. Parameters for grid stretching, wide code (2 = [+ill, G = 7+iu) 

Figure 3(a-c) shows how these mappings bring a physically suitable domain to 
rectangular shape. As in the case of the narrow code, a last mapping uses a G-plane 
with an equispaced grid (figure 3 4 .  To get from the G-plane to the Z-plane, we use 
a cubic polynomial vertically (with inflexion point at the bottom edge) and a 
quintic-cubic spline horizontally with nodes (also inflexion and fix points) at 0 and 
2 (cf. table 3). Figure 3(a-d) shows grids with about l/lOth of the maximal density 
used (up to 701 x 121 DS. 81 x 13 displayed here). 

4. Numerical method 
The dtimerical methods used in this study follow very closely the ones previously 

employed in Fornberg (is86, 1988). Therefore, the description here is brief and 
focuses maihly on the differehces to the previous implementations. 

The gbverning equations are approximated by centred, second-order finite 
differences. Potehtial flow ie subtracted from Y before (3) and (4) are discretized. For 
the narrow code, this amounts simply to  subtracting Ybot = (W/V)ImZ. For the 
wide code, finding YPot (and its derivatives with respect to f and 7) requires 
transformations from the Z-plane of equations (7) and (8) to the X-plane and then 
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use of (5)  and (6) to obtain the Z-variable of the narrow separation case. The reason 
for working with $ = Y- Ypot rather than with Y is that this difference is a smoother 
function than Y itself, particularly near the top of the stretched grids. The 
truncation errors from finite differencing become smaller. 

The boundary conditions along the left edge in the narrow code and the top edge 
in the wide code are implemented as described in Fornberg (1988). The required 
linearly independent sets of basis solutions are obtained by considering arrays of 
vortices, as indicated in figure 4 (in the case of the wide code). With point vortices 
of opposite signs located at (xo, yo) and (xo, -yo) and periodically repeated every W 
units vertically, the stream function at an arbitrary position (x, y) becomes 

All these basis solutions satisfy (3) for w = 0 and 

$(x,kW/2) = 0, k = 0, f 1, f 2 ,  + 3  )... . (11) 
They can therefore be used to impose the desired vertical W-periodicity. 

Partly because of the relatively small extent of the downstream (outflow) 
boundary, the conditions imposed there proved not critical. The condition 
aw/a& = 0 (implemented over two adjacent grid points) serves the additional 
purpose of eliminating mesh size oscillations which otherwise may arise when centred 
approximations are used in convection-diffusion problems. As a second outflow 
condition, a2Y/a&z = 0 was imposed (where Y is the ‘full’ stream function; not the 
perturbation @ from potential flow). 
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FIGURE 5. Stencils for the finite-difference approximations of the Navier-Stokes equations. (a) 
Five-point stencil corresponding to equation (3) ; ( b )  five-point stencil corresponding to (4) ; (c) 13- 
point stencil corresponding to (3) and (4) with w eliminated. 

For both codes, the a-plane grids consist of M columns (numbered 1 to M ,  left to 
right) and N rows (numbered 1 to N ,  bottom to top). On these grids, the stretched 
versions of (3) and (4), approximated by second-order finite differences, give rise to 
five-point stencils, as illustrated in figure 5(a ,  b )  (showing at which point each 
unknown is present). Since w appears explicitly, a t  one position only, in (3) (figure 
5 a ) ,  we substitute this expression for w into the difference formula corresponding to 
(4) to obtain the (nonlinear) 13-point formula for $ as indicated in figure 5 ( c ) .  

Because of the extent of this 13-point stencil, two rows/columns of boundary 
conditions must surround the domain where we wish to use it. The details for these 
boundary conditions differ somewhat between the two codes : 

Narrow code The unknown perturbation stream function $ has to be calculated in 
rows 2 to N -  1 and columns 1 to M (cf. figure 6 a ;  for convenience of description, 
‘fictious’ rows 0 and N +  1 are added to the domain). In the different edge areas, the 
following boundary conditions are used : 

(3) Asymptotic b.c. from basis (8) $row0 = -$row2 
functions as described above 

(4) w = 0 (expressed in $) (9) $row0 = $row2 

aw 
= 0 (expressed in $) 
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FIGURE 6. Implementation of the boundary conditions (in the G-planes). (a) Narrow code, 
( b )  wide code. 

Wide code The perturbation stream function $ is unknown in rows 2 to N ,  columns 
2 to M (cf. figure 66; 'fictious' column 0 and row 0 are added). The following 
boundary conditions are used : 

(1)  Asymptotic b.c. from basis = 0 (expressed in $) 
functions as described above 

( 2 )  w = 0 (expressed in $) 
a v  
atz  

(6) - = 0 (expressed in $) 
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FIGURE 7. Structures of the linear systems to be solved using Newton’s method. (a) Narrow 
code, (b) wide code. 

5. Computational considerations 
In the case of the narrow code, the most convenient ordering of the unknowns is 

by columns, from left to right. The coefficient matrix then takes the form shown in 
figure 7 (a). Each of the minor blocks are of size ( N -  2) x (N-  2) ; the system has M 
block rows. Pivoted Gaussian elimination can make full use of the zeros outside the 
outermost diagonals, but not the zeros between them. The solution of each system 
(bandwidth 4 x N -  7, M x (N-2) equations) involves approximately 1WP arith- 
metic operations. In the case ofM = 937, N = 181, this takes about 12.8 min on the 
Cray X-MP/14se a t  Exxon Corporate Research. This corresponds to a sustained 
speed of about 115 Mflops (million floating operations per second, in 64-bit precision). 

In the case of the wide code, the asymptotic top boundary condition leads to a 
more complex structure of the corresponding linear systems. With the unknowns 
ordered in columns 2 to M, elements 2 to N -  1 followed by row N, columns 2 to M, 
it becomes as shown in figure 7 ( b ) .  The small blocks are of size (N-2) x (N-2), the 
large one (in the bottom right corner) is (M-  1) x ( M -  1). For each system there are, 
to leading order, 16MP+lWP operations (with an M = 701, N =  121 system 
requiring about 15.3 min, again corresponding to about 115 Mflops). 

In both cases, the use of temporary disk storage during the Gaussian eliminations 
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FIQIJRE 8. Streamlines for different values of R up to 600 and W up to co. Contour values: 
[{l6, 9, 4, l}, (0.2, 0, -0.2. ... -1.4}, (-2.0, -2.5, -3.0, ..-}I. 
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FIGURE 10. Vorticity fields at R = 700 for (a )  W = 10, ( b )  20 and (e) 30, ( d )  40, (e) 100, ( f )  00. 
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T 

FIGURE 1 1 .  Lengths of the recirculation regions (measured from the centres of the cylinders). 

FIGTJRE 12. Widths of the recirculation regions (measured across both halves). 

(of approximately 120 Mwords) allowed the codes to be run in less than 2 Mwords of 
main memory. By calculating the entries in the linear systems first when they were 
needed in the elimination and by operating double I/O-channels in parallel with the 
numerical calculations, the computations were CPU- (rather than I/O-) bound. 

Typically four to  five iterations were needed in each case for convergence to near- 
machine accuracy. Continuation between cases were performed by simple stepping in 
R or W. 

6. Results 
Figure 8 shows how the flow fields vary with W and R (up to 600). Figure 9 gives 

similar results for R = 800 and displays in particular the process by which long and 



Flow past a row of cylinders 667 

0.17R 

,p Length 

5 100 

3 a0 

4 
5 

Length/ 
5 . 1.6691 8 60 
4 Width 
- 
3 4 0  

20 

n I 

100 200 300 400 500 600 700 800 900 
R 

FICWRE 13. Lengths and widths of the recirculation regions for W = 00. 
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a 

FIGURE 14. Maximal vorticity (in magnitude) on the cylinder surfaces. 

slender wakes for W < We,,, transform into wide (but still long) wakes as W is further 
increased, a ‘bulge’ starting to appear near the end of the recirculation region, but 
soon expanding to dominate the wake. Following W = 20 for R = 200,400,600 and 
800 through figures 8 and 9 suggests a pattern for how the wake evolves for a fixed 
W > Wcrit when R is increasing. The ‘bulge ’) which appears at  the end of the wake, 
reaches a maximum size allowed by W and is then pushed further and further 
downstream. 

Figure 1O(a-f) displays the structure of the vorticity fields at R = 700 and 
W = 10, 20, 30, 40, 100 and co respectively (with the sign reversed; the vorticity is 
negative throughout the displayed areas). Note that the scales on the x- and y-axes 
differ, as can be seen from the labels as well as from the distorted shape of the circular 
cylinder a t  the origin. The first four parts (figure l o a d )  extend in the y-direction up 

FLM 225 22 
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FIQURE 15. Drag coefficients C,. 

to the physical line of symmetry (at y = aW), the last two (figures 10e,f)  do not, and 
also have a different vertical scale. Figures similar to these, but with W fixed ( =  00)  

and R increasing (up to 600) were presented in Fornberg (1985). 
Figures 11 and 12 show the lengths and the widths of the recirculation regions, 

measured from the centre of the cylinder and across the full wake respectively. The 
results for R < 600, W = 00 from Fornberg (1985) are included for comparison in 
figures 1 1  and 12 as well as in figures 14 and 15 described later (marked by long 
dashes). It is only in these two cases (figures 11 and 12) that there are any noticeable 
differences between the two studies. Figure 13 illustrates the near-linear trends for 
lengths and widths for large R in the case of a singular cylinder ( W = 00).  The upper 
set of dotted data satisfy the relation L = 0.17R, proposed by Smith (1979) as an 
approximation to the wake length. The slope of the lower set of dotted data 
(length/1.6691) is indistinguishable from that of the wake width. This relationship 
between these two trends supports the idea that the wakes, at the highest Reynolds 
numbers considered here, can be described as perturbations of the self-propagating 
Euler solutions (as described by Sadovskii 1971) in their limit of vanishing vortex 
sheet strengths. In this limit the aspect ratio, length/width, is minimal, approxi- 
mately 1.6691 according t o  Wu, Overman & Zabusky (1984). 

Figure 14 displays the maximum vorticity values (in magnitude) on the body 
surface. As in Fornberg (1985), the peak vorticity is seen to decrease for increasing 
R at high W (owing to the influence of the rapidly widening wake on the incoming 

The drag coefficients C, were calculated from integrals along the cylinder surfaces, 
flow). 

corresponding to the relation (in polar coordinates) : 

C, = R  (w,-w)sinOdO. 4r 
Results for C, are shown in figure 15. 

14 and 15. 
Table 4 gives numerical values for the data displayed graphically in figures 11, 12, 
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W 
5 

10 
20 
40 

100 
lo00 

00 

W 
5 

10 
20 
40 

100 
lo00 

03 

Length of recirculation region 
R =  100 200 300 400 500 600 

10.0 18.6 27.1 35.5 43.9 52.3 
10.3 18.8 27.1 35.3 43.5 51.7 
11.9 22.0 31.8 41.5 51.1 60.6 
12.9 24.8 36.9 49.2 61.0 71.8 
13.2 26.1 40.1 56.1 72.8 84.5 
13.2 26.2 40.8 58.2 78.9 95.4 
13.2 26.2 40.8 58.2 78.9 95.4 

Width of recirculation region 
R = 100 200 300 400 500 600 

1.97 2.09 2.14 2.17 2.19 2.20 
2.37 2.61 2.80 2.87 2.92 2.95 
2.71 3.31 3.76 3.98 4.10 4.26 
2.82 3.82 4.77 6.37 8.63 11.1 
2.88 3.98 5.40 9.02 16.4 24.1 
2.88 4.00 5.46 9.51 19.2 30.2 
2.88 4.00 5.46 9.51 19.2 30.2 

700 800 
60.7 69.1 
59.9 68.1 
70.0 79.3 
81.3 89.5 
94.0 105 

- 113 
113 - 

700 800 
2.21 2.22 
2.97 2.99 
4.51 4.75 

13.4 14.7 
30.0 35.1 
41.2 - 

41.2 - 

W R = l W  
5 17.8 

10 12.2 
20 10.3 
40 9.5 

100 9.2 
lo00 9.0 

00 9.0 

W R = l W  
5 2.974 

10 1.608 
20 1.248 
40 1.125 

100 1.072 
1000 1.060 

co 1.060 

Maximum vorticity on body surface 
200 300 400 500 600 700 800 
25.1 30.7 35.4 39.6 43.4 46.8 50.0 
17.4 21.4 24.7 27.7 30.4 32.8 35.1 
14.5 17.8 20.6 23.1 25.3 27.4 29.3 
13.1 16.0 18.4 20.5 22.4 24.2 25.8 
12.6 15.0 16.7 17.4 17.6 18.0 18.6 
12.4 14.7 16.1 15.8 14.9 14.1 - 
12.4 14.7 16.1 15.8 14.9 14.1 - 

200 
2.543 
1.363 
1.028 
0.900 
0.847 
0.831 
0.831 

Drag coefficient 
300 400 500 

2.374 2.278 2.214 
1.269 1.216 1.181 
0.948 0.906 0.879 
0.813 0.767 0.737 
0.747 0.672 0.581 
0.727 0.639 0.514 
0.726 0.639 0.514 

600 700 800 
2.168 2.131 2.100 
1.156 1.135 1.119 
0.859 0.844 0.831 
0.714 0.697 0.684 
0.503 0.453 0.424 
0.404 0.329 - 
0.403 0.328 - 

TABLE 4. Some different flow quantities as functions of R and W: numerical values for the data 
displayed in figures 11, 12 14 and 15 

7. Discussion of numerical errors 
Figure 16 illustrates the domains in the (R, W)-plane where the two codes were 

employed. The cylinder separation W = 40 is particularly difficult in both cases. 
With the narrow code, the vertical extent is then large compared to the finest scales 
that have to be resolved. Regarding the wide code, the top boundary implementation 
becomes inaccurate if this boundary overlaps with its image belonging to the cylinder 
above. With the grid in figure 3(a )  (extending vertically to 22.6), W has to exceed 
45.2. (To use the code all the way down to W = 40 required a few top grid lines to be 
removed, leaving only minimal clearance between the top of the wake and the top 

22-2 
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FIGURE 16. Restrictions on the domains in the ( R ,  W)-plane where the two codes maintain 
satisfactory accuracies. (a) Narrow code, ( b )  wide code. 

boundary). The cross-hatched rectangular strips in figure 16 suggest the approximate 
location of the different ‘barriers ’ limiting the present calculations from further 
extensions in W and R (with the present grid densities). 

With the possible exception of the wake length, the variable most sensitive to 
small errors, there is good agreement between the two codes around W = 40, as seen 
in figures 11, 12, 14 and 15. A succession of coarser grids was used to verify that 
convergence under mesh refinement always occurred at the rates, asymptotically to 
be expected from second-order-accurate schemes. 

With both codes, insufficient grid resolution invariably gave rise to spurious 
Prandtl-Batchelor wakes of relatively small size. This might support the idea that 
such wakes indeed do arise for slightly perturbed problems (this would be consistent 
with such solutions being reported by Milos et al. 1987). Since the wakes for large 
values of R and W appear to be quite sensitive to even small changes in the velocity 
profile near the bodies, further calculations with different body shapes would be 
desirable. 
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