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Numerical solutions are presented for steady two-dimensional incompressible flow
past an infinite row of cylinders (of unit radii, with distances W between their
centres). The calculations cover R < 700 for 5 < W <oo and also R =800 for
5< W< 100 (where R denotes the Reynolds number based on the cylinder
diameters). The recirculation regions (wake bubbles) are found to grow in length
approximately linearly with R in all cases. For high values of R, a major change
occurs in their character when W is increased past W, & 16. While they have
remained slenider up to this point (essentially only stretehing in length in proportion
to R), their centres of circulation have moved towards their ends. As W is further
increased, the wake bubbles widen rapidly, beginning from the rear of the wakes. In
the limit of W—co, the present results agree with the previous ones for a single
cylinder as reported by Fornberg (1985).

1. Introduction

The arrangement of cylinders considered in this study is illustrated in figure 1;
symmetry is assumed in the flow fields about the dashed horizontal lines. Previous
results for steady flows in this (or similar) geometries are summarized, for example,
in the introduction of Ingham, Tang & Morton (1990). In particular, results by Smith
(1985) and by Milos & Acrivos (1986) indicate that, for small cylinder separations W,
the lengths of the recirculation regions will grow indefinitely with B (the Reynolds
number). However, these solutions (which can be obtained from boundary-layer
approximations) fail to exist above a certain W, By numerical solution of the
Navier—Stokes equations for still higher values of W (in the similar context of an
expanding channel with slip walls), Milos, Acrivos & Kim (1987) found two other,
qualitatively distinct regimes. The first one (for W just above W) again featured
growing wakes. For even larger W, finite-sized Prandtl-Batchelor wakes were
obtained (Batchelor 1956). , ‘

The present study confirms the first two of these three regimes and details the
transition between them, but finds no evidence for the third regime (cf. some
comments at the end of §7). In the limit of W-—oc0, the present solutions tend
smoothly towards the ones previously reported for a single cylinder (Fornberg 1985).

Two separate codes were developed in order to effectively cover the cases of both
‘narrow’ (W <40) and ‘wide’ (W > 40) cylinder separations (in the following
denoted ‘narrow code’ and ‘wide code’ respectively). In both cases, the numerical
approach consisted in approximating the governing equations by second-order
centred finite differences on conformally mapped and stretched grids. The resulting
algebraic systems were then solved by (quadratically convergent) Newton iterations.
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Ficure 1. Schematic of flow configuration.

2. Mathematical formulation

In stream function—vorticity formulation (cylinders of radii 1 and Reynolds
number R based on the cylinder diameters), the steady Navier—Stokes equations take
the form

' e 4
W+a—yz+w—0, (1)
lw  Pw

Wow 0¥Yow
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The two boundary conditions on the body surface are ¥ =0¥/0n =0. On the
two primary symmetry lines y =0 and y = }W (cf. figure 1), the conditions are
P=w=0 and ¥ =1W, o =0 respectively. Finally, ¥ =y and w =0 hold as
x>+ oo (‘free stream’).

3. Generation of computational grids

An arbitrary conformal mapping from a complex (X =x+iy)-plane to a
(Z = £+in)-plane introduces only one additional factor in one of the governing
equations. After such a mapping, (1) and (2) become
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W >0 W =100 W = 50 W =20 W=10 W=5
Vv W 99.96710348 49.93421993 19.835774 31 9.67308621  4.35640639
a, 1 1.000329 10 1.00131768 1.00829321 1.03404008 1.15317637
Ay 0 —0.00000002 —0.00000035 —0.00001364 —0.00022418 —0.00409423
Ay 0 0.00000003 0.00000211  0.00015600
a, 1] —0.00000002 —0.00000624
a; 0 0.00000025
% 0 —0.00000001
TABLE 1. Values of the parameters ¥V and {a;} for some values of W
(@)
20 = -——
0= ¢x ¢ ? Y1
1110 50 80 w0 Xl
b
19.96 = ® -
s ] : 8 [
~3-2 2 10 50 80 20  ZPlane 3

-3-2 2 21

Ficure 2. Examples of grids used in the ‘narrow code’, shown here for W =40, M =79 and
N = 16 (corresponding to M = 937, N = 181 with one out of every 12 grid lines displayed).

3.1. Narrow code (W < 40)

In this case, we want first to find a convenient representation of the conformal
mapping X = X(Z) between the flow domain 0 < Im X < {W minus the unit circle
IX] =1 in the X-plane and an infinite strip in the Z-plane. This can be achieved
by eliminating 7' between the expressions

Z=%{X+alT+a2T"‘+a3T5+...}, (5)
d =X r
an T Wcoth<WX). (6)

For any real values of the parameters V and {«;}, equations (5) and (6) map
ImX=0toImZ =0and ImX = iW to Im Z = V. We want to find values for these
parameters such that the unit circle [X| = 1 also maps to a section of the real Z-axis,
for example —2 < Z < 2. To achieve this, one can consider the Laurent expansion (in
powers of X) of the right-hand side of (5) (in the present calculations obtained by
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TaBLE 2. Parameters for grid stretching, narrow code (Z = £+iy, G = 7+i0)

numerical Taylor expansion of odd powers of X coth X, by the method described by
Fornberg 1981a, b). Requiring that, for each k£ = 1,3,5,..., the X* and X~* terms
in this expansion of (5) have equal (real) coefficients, thus causing the unit circle
|X| = 1 to map to the real axis, leads, in a straightforward manner, to a rapidly con-
verging iteration process for determining V and {a,}. Table 1 gives values for V and {a,}
corresponding to some choices of W. The series in (5) is seen to converge very rapidly.

The mapping just described takes a region in the X-plane, as shown in figure 2 (a),
and transforms it to a rectangle in the Z-plane (figure 2b). Since the resolution
requirements are different in different parts of this rectangle, we consider a further
plane (G-plane, figure 2¢). We use an equispaced grid in this plane; the mapping
between the Z- and the G-planes consists of independent grid stretchings in the two
space directions: vertically a quartic polynomial with inflexion points at the two
edges, horizontally a cubic—quintic—cubic spline with nodes (which are also inflexion
and fix points) at —2 and 2. The additional free parameters (cf. table 2) were chosen
to give enhanced resolution in the boundary layer and at the front and back
stagnation points on the cylinder, to compensate for singularities in the conformal
mapping at these points.

Figure 2 (a—) shows the grids used for W = 40, although only every 12th grid line
is marked (horizontally and vertically; actual grids up to 937 x 181 were used wvs.
79 x 16 shown in figure 2).

3.2. Wide code (W = 40)

Even with use of vertical grid stretching, it turns out to be computationally very
uneconomical to use grids which extend all the way between ImX =0 and
Im X = LW if Wis large. Therefore, for W > 40, we instead use a grid which is just wide
enough to enclose the area where w is non-zero. The required vertical periodicity is
implemented by a suitable boundary condition along the top edge of this
computational domain. A convenient mapping X = X(Z) for this case can again be
expressed by means of an auxiliary variable T

5 772 +40 77 —40
T=aZ+ 3 {arctan 15 +arctan 5 } , (7)
and \ .
T=X+X1 (8)

For any value of a, X < —1 maps to the positive imaginary axis —iZ > 0. With the
choice
a = 1—3{arctan $ —arctan 2§} ~ 0.685... 9)

the unit circle | X| =1 mapsto0<Z<2and X >1to Z>2.
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Ficure 3. Examples of grids used in the ‘wide code’, shown here for M = 81 and N = 13.
Actual grid densities ranged up to M = 701, N = 121.
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TaBLE 3. Parameters for grid stretching, wide code (Z = £+1i7, G = 7+i0)

Figure 3(a—) shows how these mappings bring a physically suitable domain to
rectangular shape. As in the case of the narrow code, a last mapping uses a G--plane
with an equispaced grid (figure 3d). To get from the G-plane to the Z-plane, we use
a cubic polynomial vertically (with inflexion point at the bottom edge) and a
quintic—cubic spline horizontally with nodes (also inflexion and fix points) at 0 and
2 (cf. table 3). Figure 3 (a—d) shows grids with about 1/10th of the maximal density
used (up to 701 x 121 ws. 81 x 13 displayed here).

4. Numerical method

The dtimerical methods used in this study follow very closely the ones previously
employed in Fornberg (1985, 1988). Therefore, the description here is brief and
focuses maitily on the differences to the previous implementations.

The governing equations are approximated by centred, second-order finite
differences. Potehtial flow is subtracted from ¥ before (3) and (4) are discretized. For
the narrow code, this amounts simply to subtracting ¥, = (W/V)ImZ. For the
wide code, finding ¥, (and its derivatives with respect to £ and 7) requires

transformations from the Z-plane of equations (7) and (8) to the X-plane and then
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Values of the basis functions calculated
along the top two grid lines

L IR S SN SRS SRS IR
Defines a vortex array; each choice
leads to an independent basis function

FicURE 4. Generation of the top boundary condition for the wide code.

use of (5) and (6) to obtain the Z-variable of the narrow separation case. The reason
for working with i = ¥ — ¥, rather than with ¥ is that this difference is a smoother
function than ¥ itself, particularly near the top of the stretched grids. The
truncation errors from finite differencing become smaller.

The boundary conditions along the left edge in the narrow code and the top edge
in the wide code are implemented as described in Fornberg (1988). The required
linearly independent sets of basis solutions are obtained by considering arrays of
vortices, as indicated in figure 4 (in the case of the wide code). With point vortices
of opposite signs located at (x,,y,) and (z,, —y,) and periodically repeated every W
units vertically, the stream function at an arbitrary position (x, y) becomes

_ 1 [cosh[2n(x—=y)/W]—cos[2n(y—y,)/W]
vizy) = 4n In {cosh [21t(x—x:)/W] — cos [2n(y + y:)/W]} ' (10)
All these basis solutions satisfy (3) for w = 0 and

Y, kW/2)=0, k=0,+1,£2, £3,.... (11)

They can therefore be used to impose the desired vertical W-periodicity.

Partly because of the relatively small extent of the downstream (outflow)
boundary, the conditions imposed there proved not critical. The condition
O0w/0f = 0 (implemented over two adjacent grid points) serves the additional
purpose of eliminating mesh size oscillations which otherwise may arise when centred
approximations are used in convection—diffusion problems. As a second outflow
condition, 0?¥/0£% = 0 was imposed (where ¥ is the ‘full” stream function; not the
perturbation i from potential flow).
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F1curE 5. Stencils for the finite-difference approximations of the Navier—Stokes equations. (a)
Five-point stencil corresponding to equation (3); (b) five-point stencil corresponding to (4); (¢) 13-
point stencil corresponding to (3) and (4) with & eliminated.

For both codes, the G-plane grids consist of M columns (numbered 1 to M, left to
right) and N rows (numbered 1 to N, bottom to top). On these grids, the stretched
versions of (3) and (4), approximated by second-order finite differences, give rise to
five-point stencils, as illustrated in figure 5(a, b) (showing at which point each
unknown is present). Since w appears explicitly, at one position only, in (3) (figure
5a), we substitute this expression for @ into the difference formula corresponding to
(4) to obtain the (nonlinear) 13-point formula for § as indicated in figure 5(c).

Because of the extent of this 13-point stencil, two rows/columns of boundary
conditions must surround the domain where we wish to use it. The details for these
boundary conditions differ somewhat between the two codes:

Narrow code The unknown perturbation stream function i has to be calculated in
rows 2 to N—1 and columns 1 to M (cf. figure 6a; for convenience of description,
‘fictious’ rows 0 and N+ 1 are added to the domain). In the different edge areas, the
following boundary conditions are used:

' .
(1) wrow N+1 = — '/,row N-1 (6) a_gz =0 (expressed n '/I)
2) y=0 (M y=0
(3) Asymptoticb.c. from basis (8) Yrowo = —¥rows
functions as described above
(4) @ = 0 (expressed iny) (9 Yrowo = Vrowe
ow .
(5) =0 (expressed m ¢) (10) wrowo = wrowr

/4
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Ficukk 6. Implementation of the boundary conditions (in the G-planes). (@) Narrow code,
(b) wide code.

Wide code The perturbation stream function ¥ is unknown in rows 2 to N, columns
2 to M (cf. figure 6b; ‘fictious’ column 0 and row 0 are added). The following
boundary conditions are used:

(1) Asymptoticb.c. from basis (5) 2—0) = 0 (expressed in )
functions as described above £
. el 4 .
(2) w = 0 (expressed iny) (6) a—g,_, = 0 (expressed in )
(3) Yearo = —Yeorz (7 ‘/frowo = ¢r0w2

4) ‘/f =0 (8) ‘/frowo = _¢r0w2'
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(@)

FiGUre 7. Structures of the linear systems to be solved using Newton’s method. (a) Narrow
code, (b) wide code.

5. Computational considerations

In the case of the narrow code, the most convenient ordering of the unknowns is
by columns, from left to right. The coefficient matrix then takes the form shown in
figure 7 (a). Each of the minor blocks are of size (N—2)x (N—2); the system has M
block rows. Pivoted Gaussian elimination can make full use of the zeros outside the
outermost diagonals, but not the zeros between them. The solution of each system
(bandwidth 4 x N—17, M x (N—2) equations) involves approximately 16MN® arith-
metic operations. In the case of M = 937, N = 181, this takes about 12.8 min on the
Cray X-MP/14se at Exxon Corporate Research. This corresponds to a sustained
speed of about 115 Mflops (million floating operations per second, in 64-bit precision).

In the case of the wide code, the asymptotic top boundary condition leads to a
more complex structure of the corresponding linear systems. With the unknowns
ordered in columns 2 to M, elements 2 to N—1 followed by row N, columns 2 to M,
it becomes as shown in figure 7 (). The small blocks are of size (N—2) x (N—2), the
large one (in the bottom right corner) is (M —1) x (M —1). For each system there are,
to leading order, 16MN*+ 12M2N? operations (with an M =701, N = 121 system
requiring about 15.3 min, again corresponding to about 115 Mflops).

In both cases, the use of temporary disk storage during the Gaussian eliminations



B. Fornberg

664
— \
_— R —
e A
U A A - o= = A [« = A N—
'8 1510 20 30 1510 20 30 40 50 60 1510 20 30 40 50 60 70 80 90 100
o
o 4
2 T
3 _ _— —
—_— ——>,
L) = s, ‘(«««é; =>>>> o
1510 20 30 1510 20 30 40 50 &0 1510 20 30 40 50 60 70 8 9 100
.
40 e —
1510 20 30 1510 20 30 40 50 60 1510 20 30 40 SO 60 70 80 90 100
L] —
2| 30z - - ——
; 1510 20 30 1510 20 30 40 50 60 1510 20 30 40 50 60 70 8 90 100
£
o
= —_—
s | 20 = A = ——— —
Z 1510 20 30 1510 20 30 4 5 60 1510 20 30 4 50 60 70 8 60 100
10 7= e — = P ——
1510 20 30 1510 20 30 40 50 60 1510 20 30 40 5 60 70 80 90 100
“51510 20 30 1510 20 30 40 50 60 1510 20 30 40 50 60 70 80 90 100
R =200 R =400 R = 600

Ficurk 8. Streamlines for different values of R up to 600 and W up to co. Contour values:

({16, 9, 4, 1}, {0.2,0, —0.2, --- —1.4}, {—2.0, —2.5, —3.0, ---}].
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F1GURE 9. Streamlines for B = 800 and W up to 100.
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Fieure 10. Vorticity fields at B = 700 for (a) W = 10, (b) 20 and (c) 30, (d) 40, (e) 100, (f) co.
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Fiaure 12. Widths of the recirculation regions (measured across both halves).

(of approximately 120 Mwords) allowed the codes to be run in less than 2 Mwords of
main memory. By calculating the entries in the linear systems first when they were
needed in the elimination and by operating double I/0O-channels in parallel with the
numerical calculations, the computations were CPU- (rather than I/0-) bound.
Typically four to five iterations were needed in each case for convergence to near-
machine accuracy. Continuation between cases were performed by simple stepping in

Ror W.

6. Results
Figure 8 shows how the flow fields vary with W and R (up to 600). Figure 9 gives
similar results for B = 800 and displays in particular the process by which long and
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Ficure 13. Lengths and widths of the recirculation regions for W = co.

Ficure 14. Maximal vorticity (in magnitude) on the cylinder surfaces.

slender wakes for W < W,_,, transform into wide (but still long) wakes as W is further
increased, a ‘bulge’ starting to appear near the end of the recirculation region, but
soon expanding to dominate the wake. Following W = 20 for R = 200, 400, 600 and
800 through figures 8 and 9 suggests a pattern for how the wake evolves for a fixed
W > W,,;, when R is increasing. The ‘bulge’, which appears at the end of the wake,
reaches a maximum size allowed by W and is then pushed further and further
downstream.

Figure 10(a—f) displays the structure of the vorticity fields at R = 700 and
W = 10, 20, 30, 40, 100 and oo respectively (with the sign reversed; the vorticity is
negative throughout the displayed areas). Note that the scales on the z- and y-axes
differ, as can be seen from the labels as well as from the distorted shape of the circular
cylinder at the origin. The first four parts (figure 10a—d) extend in the y-direction up

22 FLM 225
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Ficure 15. Drag coefficients Cp,.

to the physical line of symmetry (at y = W), the last two (figures 10e, f) do not, and
also have a different vertical scale. Figures similar to these, but with W fixed (= o0)
and R increasing (up to 600) were presented in Fornberg (1985).

Figures 11 and 12 show the lengths and the widths of the recirculation regions,
measured from the centre of the cylinder and across the full wake respectively. The
results for R < 600, W =oo0 from Fornberg (1985) are included for comparison in
figures 11 and 12 as well as in figures 14 and 15 described later (marked by long
dashes). It is only in these two cases (figures 11 and 12) that there are any noticeable
differences between the two studies. Figure 13 illustrates the near-linear trends for
lengths and widths for large R in the case of a singular cylinder (W = o). The upper
set of dotted data satisfy the relation L = 0.17R, proposed by Smith (1979) as an
approximation to the wake length. The slope of the lower set of dotted data
(length/1.6691) is indistinguishable from that of the wake width. This relationship
between these two trends supports the idea that the wakes, at the highest Reynolds
numbers considered here, can be described as perturbations of the self-propagating
Euler solutions (as described by Sadovskii 1971) in their limit of vanishing vortex
sheet strengths. In this limit the aspect ratio, length/width, is minimal, approxi-
mately 1.6691 according to Wu, Overman & Zabusky (1984).

Figure 14 displays the maximum vorticity values (in magnitude) on the body
surface. As in Fornberg (1985), the peak vorticity is seen to decrease for increasing
R at high W (owing to the influence of the rapidly widening wake on the incoming
flow).

The drag coefficients C,, were calculated from integrals along the cylinder surfaces,
corresponding to the relation (in polar coordinates):

Cp= éf‘(a),—tu) sin 8d6. (12)
R 0
Results for €}, are shown in figure 15.
Table 4 gives numerical values for the data displayed graphically in figures 11, 12,
14 and 15.
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Length of recirculation region
W R=100 200 300 400 500 600 700 800

5 10.0 186 27.1 355 439 523 607 69.1
10 10.3 188 271 353 435 51.7 599 68.1
20 11.9 220 318 415 511 606 700 793
40 12.9 248 369 492 610 718 813 895
100 13.2 26.1 401 561 728 845 940 105
1000 13.2 262 408 582 789 954 113 —
o0 13.2 262 408 582 789 954 113 —

Width of recirculation region
W R=100 200 300 400 500 600 700 800

5 1.97 2.00 214 217 2.19 220 221 222

10 2.37 2.67 2.80 2.87 292 295 297 299

20 2.1 337 376 398 410 4.26 451 4.75
40 2.82 3.82 477 6.37 8.63 11.1 134 14.7
100 2.88 3.98 540 902 164 241 300 35.1
1000 2.88 400 546 951 192 302 412 —
o0 2.88 400 546 951 192 302 412 —

Maximum vorticity on body surface
W R=100 200 300 400 500 600 700 800

5 178 25.1 307 354 396 434 468 500

10 122 174 214 247 277 304 328 351

20 103 145 17.8 206 23.1 253 274 293

40 9.5 131 160 184 205 224 242 258

100 9.2 126 150 167 174 176 180 186
1000 9.0 124 147 161 158 149 14.1 —
o0 9.0 124 147 161 158 149 14.1 —

Drag coefficient
W R=100 200 300 400 500 600 700 800

5 2974 2543 2374 2278 2214 2.168 2.131 2.100

10 1.608 1.363 1.269 1.216 1.181 1.156 1.135 1.119

20 1.248 1.028 0.948 0.906 0.879 0.859 0.844 0.831

40 1.125 0.900 0.813 0.767 0.737 0.714 0.697 0.684

100 1.072 0.847 0.747 0.672 0.581 0.503 0.453 0.424
1000 1.060 0.831 0.727 0.639 0.514 0.404 0.329 —
oo 1.060 0.831 0.726 0.639 0.514 0403 0.328 —

TasLE 4. Some different flow quantities as functions of R and W: numerical values for the data
displayed in figures 11, 12 14 and 15

7. Discussion of numerical errors

Figure 16 illustrates the domains in the (R, W)-plane where the two codes were
employed. The cylinder separation W = 40 is particularly difficult in both cases.
With the narrow code, the vertical extent is then large compared to the finest scales
that have to be resolved. Regarding the wide code, the top boundary implementation
becomes inaccurate if this boundary overlaps with its image belonging to the cylinder
above. With the grid in figure 3 (a) (extending vertically to 22.6), W has to exceed
45.2. (To use the code all the way down to W = 40 required a few top grid lines to be
removed, leaving only minimal clearance between the top of the wake and the top

22-2
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F1cURE 16. Restrictions on the domains in the (R, W)-plane where the two codes maintain
satisfactory accuracies. (a) Narrow code, (b) wide code.

boundary). The cross-hatched rectangular strips in figure 16 suggest the approximate
location of the different ‘barriers’ limiting the present calculations from further
extensions in W and R (with the present grid densities).

With the possible exception of the wake length, the variable most sensitive to
small errors, there is good agreement between the two codes around W = 40, as seen
in figures 11, 12, 14 and 15. A succession of coarser grids was used to verify that
convergence under mesh refinement always occurred at the rates, asymptotically to
be expected from second-order-accurate schemes.

With both codes, insufficient grid resolution invariably gave rise to spurious
Prandtl-Batchelor wakes of relatively small size. This might support the idea that
such wakes indeed do arise for slightly perturbed problems (this would be consistent
with such solutions being reported by Milos et al. 1987). Since the wakes for large
values of R and W appear to be quite sensitive to even small changes in the velocity
profile near the bodies, further calculations with different body shapes would be
desirable.
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